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Abstract

This document describes a software package which implements a parallel hybrid (direct/iterative)
linear solver based on the Schur complement method for solving a general sparse linear system
of equations. The package is named parallel domain decomposition Schur complement based
linear solver, or PDSLin in short. We give a brief description of the algorithm, installation,
calling sequences, and data structures of PDSLin.1
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1 Introduction

Modern numerical simulations give rise to sparse linear systems of equations that are difficult to
solve using a standard technique alone. Matrices that can be directly factorized are limited in size
due to large memory and communication requirements. Preconditioned iterative solvers require
less memory and communication, but often require an effective preconditioner, which may not be
readily available. This document describes a software package that implements a parallel hybrid
(direct/iterative) linear solver employing techniques from both direct and iterative methods to
efficiently solve these linear systems. The package is named parallel domain decomposition Schur
complement based linear solver, or PDSLin in short.

PDSLin is an ANSI C library with Fortran interface and uses MPI for communication. It is
based on a non-overlapping domain decomposition technique called the Schur complement method.
In this method, the global system is first partitioned into smaller interior subdomain systems, which
are connected only through separators or interface. To compute the solution of the global system,
the solution on the interface is first computed by solving a so-called Schur complement system, which
is obtained by eliminating the unknowns associated with the interior subdomain systems. Then,
the remaining part of the solution is computed by solving the mutually-independent subdomain
systems. This Schur complement method provides a framework to develop a hybrid linear solver
because various options can be implemented for solving the Schur complement and subdomain
systems. For instance, to avoid the potentially large amount of memory required to explicitly
form the Schur complement, a preconditioned iterative method can be used to solve the Schur
complement system. On the other hand, a parallel direct solver is often effective to solve interior
subdomain systems in parallel.

The rest of this document is organized as follows: In Section 2, we first describe the algorithm
implemented in PDSLin. Then, in Section 3, we provide the installation guide of the software,
while Sections 4 and 5 respectively show typical calling sequences from C and Fortran programs.
Next, in Sections 6 and 7, we discuss the inputs and outputs of PDSLin, respectively. Finally, in
Section 8, we list some additional options that may be useful in some cases.

2 Algorithmic overview

PDSLin is a software package for solving a linear system of equations,

AX = B, (1)

where A is a square real or complex general matrix, B is a set of given dense right-hand-side
vectors, and X is the dense solution vectors to be computed. It uses a non-overlapping domain
decomposition technique called the Schur complement method. In this method, the original linear
system (1) is first reordered into a system of the following block structure:
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where Dℓ represents the ℓ-th interior subdomain, C consists of separators, and Eℓ and Fℓ are the
interfaces between Dℓ and C. The solution of the linear system (2) is then computed by first
solving the Schur complement system

SY = Ẑ, (3)

where S is the Schur complement defined as

S = C −

k∑

ℓ=1

FℓD
−1

ℓ
Eℓ,

and Ẑ = Z −

∑
k

ℓ=1
FℓD

−1

ℓ
Bℓ. Finally, the remaining part of the solution is computed by solving

the mutually-independent subdomain system

DℓXℓ = Bℓ − EℓY. (4)

See [16] and the references within for a detailed discussion on the Schur complement method.
To avoid the potentially large amount of memory required to explicitly form the Schur com-

plement S, the default setup of PDSLin uses a preconditioned iterative solver to solve the Schur
complement system (3), while a parallel direct solver is used to solve the interior subdomain sys-
tem (4). With this default setup, PDSLin consists of the following two phases:

1. Computing preconditioner. First, the global system is partioned to extract the interior
subdomains using a parallel nested graph dissection algorithm of PT-SCOTCH [3, 7] or
ParMETIS [1, 11]. The interior subdomains are then factorized in parallel, using a parallel
direct solver SuperLU DIST [5, 13] on each subdomain. Finally, a preconditioner S̃ to solve
the Schur complement system (3) is computed as follows:

S = C −

k∑

ℓ=1

(FℓU
−1

ℓ
)(L−1

ℓ
Eℓ), after the LU factorization of Dℓ, i.e., Dℓ = LℓUℓ

≈ C −

k∑

ℓ=1

G̃ℓW̃ℓ, where G̃ ≈ FℓU
−1

ℓ
and W̃ ≈ L−1

ℓ
Eℓ with a drop threshold τ0

≈ C −

k∑

ℓ=1

T̃ℓ, where T̃ℓ ≈ G̃T

ℓ
W̃ℓ with a drop threshold τ1

≈ S̃, where S̃ ≈ C −

∑
k

ℓ=1
T̃ℓ with a drop threshold τ2. (5)

At each step of computing S̃, nonzeros with their magnitudes less than a drop threshold are
discarded from the intermediate matrices. Then, the LU factorization of S̃ is computed using
SuperLU DIST.

2. Computing solution. First, the Schur complement system (3) is solved using a precondi-
tioned Krylov subspace method of PETSc [2, 6]. Then, the subdomain systems (4) are solved
in parallel, using the already-computed LU factors of the subdomains.

See [17] for a more detailed discussion on the parallel implementation of PDSLin.
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3 Installation

Our package requires the following external libraries:

• PT-SCOTCH [3] or ParMETIS [1], which is used to extract interior subdomains;

• SuperLU DIST (version 2.4 or above) [5], which is used to solve the interior subdomain
systems and possibly the Schur complement system by a parallel direct method;

• METIS [12], which is used by SuperLU DIST for matrix ordering; and

• PETSc (version 2.3.3 or above) [2], which is used to solve the Schur complement system by
an iterative method. If the parallel direct solver SuperLU DIST is used to solve the Schur
complement system, then PETSc is not needed.

The source code of PDSLin can be obtained by contacting the authors. Once you obtain and
untar the package, the source codes are organized under the following directories:

pdslin_0.0/src : C source files

/include : C header files

/examples : C example programs

/fortran : Fortran interface

/fortran/examples : Fotran example programs

/lib : PDSLin library

/make.examples : make.inc examples

To install the package, you first need to modify the “make.inc” file in the top directory
“pdslin 0.0.” There are a number of example make.inc in “make.examples” directory, which we
used on different architectures. We list below some of the parameters that may need to be modified
in the make.inc file. For this example, we show the make.inc file that was used on a Cray XT-4
machine at NERSC, where “-DWITH PETSC” indicates that PDSLin is linked to PETSc.

# directory, where PDSLin is installed

HOME = /global/u2/y/yamazaki/franklin_Jan21.2010/pdslin_0.0

########################################################################

# make utility

MAKE = make

########################################################################

# archiver and flags used to build PDSLin

ARCH = ar

ARCHFLAGS = -cr

########################################################################

# C compiler and flags used to compile the code

CC = cc

FLAGS = -fastsse -DWITH_PETSC

########################################################################
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# Fortran compiler and flags

FC = ftn

FLIB = -lpgf90 -lpgf90_rpm1 -lpgf902 -lpgf90rtl -lpgftnrtl

FFLAGS = -fastsse

########################################################################

# linker used to link the example program with PDSLin library

LINKER = CC

#########################################################################

# External libraries:

#

# BLAS/MPI libraries, and MPI include

L_BLAS =

L_MPI =

I_MPI =

# parallel partitioning library, and its header files

L_PPART = -L/usr/common/usg/parmetis/3.1 -lparmetis -lmetis

I_PPART = -I/usr/common/usg/parmetis/3.

# Metis library, and its header files

L_METIS = -L/global/u2/y/yamazaki/franklin_Jan21.2010/metis-5.0pre2/build/Linux-x86_64 \

-lmetis

I_METIS = -I/global/u2/y/yamazaki/franklin_Jan21.2010/metis-5.0pre2/include

# SuperLU_DIST library, and its header files

SLUDIST = /global/u2/y/yamazaki/franklin_Jan21.2010/SuperLU_DIST_2.4

L_SLUDIST = -L$(SLUDIST)/lib/ -lsuperlu_dist_2.4

I_SLUDIST = -DDEBUGlevel=0 -DPRNTlevel=0 -DAdd_ -DUSE_VENDOR_BLAS -I$(SLUDIST)/SRC

# PETSc Library, and its header files

# double version

PETSC_ARCH = cray-xt4_g

PETSC_DIR = /usr/common/acts/PETSc/2.3.3

I_PETSC = -I$(PETSC_DIR)/src/dm/mesh/sieve -I$(PETSC_DIR) \

-I$(PETSC_DIR)/bmake/$(PETSC_ARCH) -I$(PETSC_DIR)/include

L_PETSC = -L$(PETSC_DIR)/lib/$(PETSC_ARCH) -lpetscksp -lpetscdm -lpetscmat \

-lpetscvec -lpetsc

# complex version

I_ZPETSC = -I$(PETSC_DIR)/src/dm/mesh/sieve -I$(PETSC_DIR) \

-I$(PETSC_DIR)/bmake/$(PETSC_ARCH)_complex -I$(PETSC_DIR)/include

L_ZPETSC = -L$(PETSC_DIR)/lib/$(PETSC_ARCH)_complex -lpetscksp -lpetscdm \

-lpetscmat -lpetscvec -lpetsc

Once the make.inc file is properly modified, you can build the library by typing
make all

This will create the C library for solving both real and complex linear systems under the “lib”
directory. If you want to create the library just for solving real or complex linear systems, then you
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can respectively type
make dlib

or
make zlib

Furthermore, the Fortran interface for solving both real and complex systems can be included into
the library by typing

make flib

4 Calling sequence in C

PDSLin can solve both real and complex linear systems of equations. The header files and subrou-
tines for solving real or complex systems start with the letter “d” or “z,” respectively.

There are several example programs included under the “examples” directory. The following
piece of a C example program shows a typical calling sequence to solve a real linear system using
PDSLin. Each subroutine call will be described in more details below.

#include <mpi.h>

#include "dpdslin_solver.h" /* header file for solving real systems */

#include "pdslin_solver.h" /* header file for PDSLin */

int main( int argc, char* argv[] ) {

int i, info;

double *x_loc, *bloc;

MPI_Comm pdslin_comm = MPI_COMM_WORLD;

dPDSLinMatrix matrix;

pdslin_param input;

pdslin_stat stat;

/* step 0: */

/* initialize MPI and PDSLin */

MPI_Init( &argc, &argv );

dpdslin_init( &input, &matrix, &stat, pdslin_comm, argc, argv );

/* step 1 */

/* set up coefficient matrix (will be explained below) */

.......

/* step 2 */

/* call PDSLin to compute preconditioner */

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

/* step 3 */

/* allocate right-hand-side and solution vectors */

x_loc = pdslin_dmalloc( matrix.mloc );

b_loc = pdslin_dmalloc( matrix.mloc );

/* step 4 */

/* setup the right-hand-side */

7



for( i=0; i<matrix.mloc; i++ ) b_loc[i] = 1.0;

/* step 5 */

/* call PDSLin to compute solution */

input.job = PDSLin_SOLVE;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

/* step 6 */

/* free right-hand-side and solution */

pdslin_free(x_loc);

pdslin_free(b_loc);

/* step 7 */

/* print out statistics */

pdslin_print_stat( &stat, input.pdslin_comm );

/* step 7 */

/* terminate MPI and PDSLin */

dpdslin_finalize(&input, &matrix);

MPI_Finalize();

return 0;

}

PDSLin expects the input coefficient matrix A in the distributed Compressed Sparse Row (CSR)
format (step 1 of the code above); namely, each processor owns a set of contiguous rows of the global
matirx A, where only the numerical values and column indices of the nonzeros in these rows are
stored in the row-wise order and in the ascending order of their row indices. This coefficient matrix
is set by modifying the corresponding member variables of “matrix” in the example above, which
is a variable of type dPDSLinMatrix:

typedef struct {

/* coefficient matrix in distributed CSR format */

int_t n; /* global matrix dimension */

int_t nnz; /* total number of nonzeros in the global matrix */

int_t frow; /* the index of the first row of the local matrix */

int_t mloc; /* the number of rows in the local matrix */

double *lnzval; /* pointer to array of nonzero values, packed by row */

int_t *lcolind /* pointer to array of columns indices of the nonzeros */

int_t * lrowptr /* pointer to array of beginning of rows in lnzval[] and */

/* lcolind[] */

/* the rest of member variables used internally by PDSLin */

.......

} dPDSLinMatrix;

The local right-hand-side and solution vectors are stored in the corresponding format, i.e., in the
example above, “b loc” and “x loc” contain the frow-th through the (frow+mloc-1)-th elements of
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the global right-hand-side and solution vectors, respectively. Note that the row and array indices
are zero-based.

Below, we list the four key PDSLin subroutines used in the example above:

• dpdslin init: subroutine to initialize PDSLin;

• dpdslin solve: computational subroutine to compute preconditioner or solution;

• pdslin print stat: subroutine to print performance statistics; and

• dpdslin finalize: subroutine to terminate PDSLin.

In the remaining of this section, we describe each of these four subroutines in more details.
Before calling any of PDSLin subroutines, the following initialization subroutine needs to be

called (step 0 of the code above):

dpdslin_init( &input, &matrix, &stat, pdslin_comm, argc, argv ),

where the user needs to specify the last three arguments. Specifically, the third argument “pdslin comm”
specifies the global MPI communicator used to solve the linear system, and the last two arguments
are the C command line arguments, which can be used to initialize PETSc. This initialization
subroutine sets up all the required MPI variables when the fifth argument argc is a non-negative
value. Hence, when this subroutine is called for the first time, argc needs to be non-negative. If
there are no command-line arguments to initialize PETSc, then the last two arguments argc and
argv can be set to be zero and NULL, respectively. Finally, if this subroutine needs to be called
more than once, then argc and argv should be negative and NULL, respectively, for the second call
and on. On return, the first three arguments “input,” “matrix,” and “stat” are initialized with the
default values.

The default values of PDSLin parameters are as follow: The number of subdomains is the
smaller of 64 and the largest power of two, which is less than or equal to the total number of
processors. Hence, if the number of processor is less than or equal to 64, then each subdomain is
factorized using one processor, while multiple processors are used to factorize each subdomain if
more than 64 processors are available. If PDSLin is linked to PETSc, then the preconditioner S̃ is
computed using the drop thresholds (τ0, τ1, τ2) = (10−6, 0.0, 10−5), while the number of processors
to compute the LU factorization of S̃ is set to be the half of the number of subdomains. Finally,
the Schur complement system is solved using GMRES, where the iteration is restarted after 100
iterations, and terminated when the relative residual norm of 10−12 is obtained, or 1, 000 iterations
are performed. These parameters can be changed by modifying the corresponding member variables
of the variable “input” of type pdslin param. See Section 6.3 for the brief description of the member
variables.

Once PDSLin is initialized and the coefficient matrix is set, we can invoke PDSLin to solve the
corresponding linear system. PDSLin allows the user to compute the preconditioner and solution,
separately. Specifically, to compute the preconditioner (step 3 of the code above), PDSLin is
invoked as

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );
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where the first two arguments “b loc” and “x loc” are the local right-hand-side and solution vectors,
respectively, both of which are not used for computing the preconditioner. The next two arguments
“matrix” and “input” respectively contain the coefficient matrix and the input parameters. At the
successful completion of the subroutine call, the preconditioner to solve the linear system has been
computed. Furthermore, the last two arguments “stat” and “info” respectively contain performance
statistics and an error code, which will be explained in Section 7.

Then, to compute the solution (step 5), we can invoke PDSLin again:

input.job = PDSLin_SOLVE;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

The user can compute the solution vectors for the same coefficient matrix and for different right-
hand-side vectors by repeatedly calling this subroutine with different “b loc” and without recom-
puting the preconditioner.

The following subroutine can be used to print out the performance statistics of pdslin solver:

pdslin_print_stat( stat, input.pdslin_comm );

where the second argument is the global MPI communicator used to solve the system. To use
this subroutine, the performance profiling needs to be turned on before calling pdslin solver (see
Section 6.3).

When all the PDSLin subroutine calls are completed, the user can call the following subroutine
to free up all the memory allocated by PDSLin (step 7 of the code above):

dpdslin_finalize(&input, &matrix);

In the example above, the subroutine pdslin dmalloc( mloc ) allocates memory for b loc and
x loc to store “mloc” double variables. In addition, the subroutine pdslin free( ptr ) is used to free
up the memory allocated to ptr.

5 Calling sequence in Fortran

Just like the C subroutines described in Section 4, all the Fortran subroutines for solving real or
complex linear systems start with the letter “d” or “z,” respectively. Example programs that use
the Fortran interface of PDSLin are included in the “fortran\examples” directory.

The following piece of the code shows how to call PDSLin for solving a real linear system from
a Fortran program. Each of the subroutine calls will be explained in more details below.

program dtest_pdslin

*

* .. PDSLin modules (step 0) ..

use pdslin_param

use pdslin_mod

implicit none

include ’mpif.h’

*

* .. local variables (step 1)..

integer(pdslin_ptr) matrix

integer(pdslin_ptr) input
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integer(pdslin_ptr) stat

integer ierr, nproc, info, pdslin_comm

parameter( pdslin_comm = MPI_COMM_WORLD )

*

* -- initialize MPI and PDSLin (step 2) --

*

call MPI_Init(ierr)

call dpdslin_init_f( input, matrix, stat, pdslin_comm )

*

* -- set coefficient matrix (step 3)--

*

call dpdslin_set_matrix_f( input, matrix, frow, mloc,

$ n, colptr, rowind, values )

*

* -- initialize PDSLin and its parameters (step 4)--

*

call MPI_Comm_size( pdslin_comm, nproc, ierr )

call set_pdslin_params_f( input, verbose = PDSLin_YES )

call set_pdslin_params_f( input, mat_type = UNSYMMETRIC )

call set_pdslin_params_f( input, num_doms = nproc )

call set_pdslin_params_f( input, drop_tau0 = 0d0 )

call set_pdslin_params_f( input, drop_tau1 = 1d-5 )

call set_pdslin_params_f( input, drop_tau2 = 0d0 )

call set_pdslin_params_f( input, inner_solver = PDSLin_GMRES)

call set_pdslin_params_f( input, inner_max = 100 )

call set_pdslin_params_f( input, inner_restart = 10 )

call set_pdslin_params_f( input, inner_tol = 1d-9 )

*

* -- compute the preconditioner (step 5)--

*

call set_pdslin_params_f( input, job=PDSLin_PRECO )

call dpdslin_solver_f( b, x, matrix, input, stat, info )

*

* -- compute the solution (step 6) --

*

call set_pdslin_params_f( input, job=PDSLin_SOLVE )

call dpdslin_solver_f( b, x, matrix, input, stat, info )

*

* -- clean up (step 7)--

*

call dpdslin_finalize_f( input, matrix, stat )

call MPI_Finalize(ierr)

*

* .. end of program ..

*

end

The Fortran subroutine names are appended by “ f” to the names of the corresponding C
subroutines discussed in Section 4. Here, we focus on the differences between the Fortran and C
calling sequences. See Section 4 for a detailed discussion on each subroutine call.

The Fortran program first needs to include two modules that define PDSLin parameters and

11



interfaces (step 0 of the code above):

use pdslin_param

use pdslin_mod

Then, to use PDSLin from a Fortran program, appropriate handles to the C data struc-
tures, dPDSLinMatrix, pdslin param, and pdslin stat, need to be declared (step 1 of the code
above). These handles are of type integer, and their sizes are given by “pdslin ptr” defined in
the pdslin param module. These objects then need to be allocated and initialized by calling the
following initialization subroutine (step 2 of the code above):

call dpdslin_init_f( input, matrix, stat, pdslin_comm )

where the last argument specifies the global MPI communicator used to solve the linear system.
This subroutine also initializes all the input parameters to their default values.

Note that these C data structures are opaque (i.e., their sizes and structures are not visible)
from the Fortran user, and can be modified only through appropriate Fortran subroutine calls. For
instance, the coefficient matrix can be set by calling the following subroutine (step 3):

call dpdslin_set_matrix_f( input, matrix, frow, mloc,

$ n, colptr, rowind, values )

where the distributed CSR format is used to store the matrix (see Section 4 for more details on
the matrix format). The column and array indices are one-based on input, but they are shifted to
zero-based on return.

Furthermore, we provide an interface to modify the individual parameters of pdslin param (step 4).
For example, the iterative solver used on the Schur complement system can be changed to FGMRES
by the following subroutine call:

call set_pdslin_params_f( input, inner_solver = PDSLin_FGMRES )

All the available parameters are defined in the module “pdslin mod.” See Section 6.3 for the
descriptions of the input parameters.

Finally, the preconditioner and solution can be computed by

*

* -- compute the preconditioner --

call set_pdslin_params_f( input, job=PDSLin_PRECO )

call dpdslin_solver_f( b, x, matrix, input, stat, info )

*

* -- compute the solution --

call set_pdslin_params_f( input, job=PDSLin_SOLVE )

call dpdslin_solver_f( b, x, matrix, input, stat, info )

When the following finalizing subroutine is called, all the memory allocated by PDSLin (includ-
ing those of opaque objects) are deallocated:

call dpdslin_finalize_f( input, matrix, stat )
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6 Inputs

In this section, we describe all the input arguments to the pdslin solver subroutine. Specifi-
cally, in Section 6.1, we describe the data structure dPDSLinMatrix (or zPDSLinMatrix)
that stores the coefficient matrix A. Then, in Section 6.2, we explain how the right-hand-side
vectors should be distributed among the processors. Finally, in Section 6.3, we describe the data
structure pdslin param that stores all the input parameters of PDSLin.

6.1 Coefficient matrix

The coefficient matrix A are stored in PDSLinMatrix structure. The only member variables of this
structure, which the user can modify, are:

typedef struct {

/* coefficient matrix in distributed CSR format */

int_t n; /* global matrix dimension */

int_t nnz; /* total number of nonzeros in the global matrix */

int_t frow; /* the index of the first row of the local matrix */

int_t mloc; /* the number of rows in the local matrix */

double *lnzval; /* pointer to array of nonzero values, packed by row */

int_t *lcolind /* pointer to array of columns indices of the nonzeros */

int_t * lrowptr /* pointer to array of beginning of rows in lnzval[] and */

/* lcolind[] */

/* the rest of member variables used internally by PDSLin */

.......

} dPDSLinMatrix;

These variables are used to store the matrix A in the distributed CSR format as described in
Section 4.

6.2 Right-hand-side vectors

The local right-hand-side vectors should be stored in the format that corresponds to the coefficient
matrix stored in PDSLinMatrix (see Section 6.1). Specifically, each processor stores the subset of
the contiguous rows of the right-hand-side vectors, where the index of the first row and the number
of rows in the local vector are specified by the member variables frow and mloc of PDSLinMa-
trix, respectively. Furthermore, the leading dimension of the vectors can be set by the member
variable ldb of the data structure pdslin input (see Section 6.3).

6.3 Solver input parameters

All the input parameters are stored in a variable of type “pdslin param.” In this section, we
describe a subset of these parameters, which are most useful to the users.

typedef struct {

MPI_Comm pdslin_comm; /* global MPI communicator for PDSLin */
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int job; /* specify job for PDSLin */

int nrhs; /* number of right-hand sides */

int ldb, ldx; /* leading dimension of b and x */

int check_input; /* to check input parameters */

int gather_stat; /* to gather statistics */

t_verbose verbose; /* to print progress of PDSLin */

t_mtype mat_type; /* coefficient matrix type */

t_mtype mat_pattern; /* coefficient matrix pattern */

int free_local; /* to internally free coeffcient matrix */

/* inputs for partitioning */

int num_doms; /* number of subdomains to be extracted */

int nproc_dcomp; /* number of processors to extract subdomains */

/* input for preconditioner */

/* dropping thresholds */

double drop_tau0, drop_tau1, drop_tau2, drop_tau3;

int equil_dom; /* equilbration/row permutation for subdomains */

int equil_schur; /* equilbration/row permutation for schur complement */

/* input for iterative solver */

t_itsolver inner_solver; /* iterative solver for schur complement */

int inner_max; /* maximum number of matrix operations */

int inner_restart; /* number of operations at restart */

double inner_tol; /* stopping criteria */

int nproc_schur; /* number of processors for schur complement */

.....

} pdslin_param;

Below, we provide some brief description of these parameters:

• pdslin comm (of type MPI Comm): specifies the global MPI communicator used to solve
the linear system.

• job (of type integer): specifies the job to be performed by PDSLin, and can be PDSLin PRECO,
PDSLin SOLVE, PDSLin PRESOLVE, PDSLin CLEAN, or PDSLin NFACT to compute
preconditioner, to compute solution, to compute both preconditioner and solution, to free
up all the memory allocated by PDSLin, or to compute the preconditioner with the same
sparsity pattern as the previous call to pdslin solve (see Section 8.2), respectively.

• nrhs: specifies the number of right-hand-side vectors. The default value is one. Information
on calling PDSLin with multiple right-hand-side vectors can be found in Section 8.1.

• ldb and ldx: specify the leading dimensions of the right-hand-side and solution vectors,
respectively. The default values are −1. If they are set to be a negative value, they are reset
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to be equal to the dimension of the local matrix (i.e. mloc of PDSLinMatrix described in
Section 6.1) when pdslin solver is called to compute the solution vectors.

• verbose (of type t verbose): specifies the level of messages to be printed by PDSLin as it runs,
and can be PDSLin VALL, PDSLin VWARN, or PDSLin VNONE to print all the status in-
formation, only warning messages, or nothing, respectively. The default is PDSLin VNONE.

• mat type and mat pattern (of type t mtype): can be either SYMMETRIC or UNSYM-
METRIC, and specify the matrix type and its sparsity pattern. The default is UNSYMMET-
RIC for both.

• schur pattern (of type t mtype): can be either SYMMETRIC or UNSYMMETRIC, and
specifies if the Schur complement should be kept symmetric or not, respectively. The default
is UNSYMMETRIC.

• free local: can be either PDSLin YES or PDSLin NO, and specifies if the original matrix
can be internally freed. The default is PDSLin NO. When this is set to be PDSLin NO,
then the entries of the local matrix (i.e., matrix.lrowptr, matrix.lcolind, and matrix.lnzval
described in Section 6.1) are not changed.

• num doms (of type integer): specifies the number of interior subdomains. In the current
version, the interior subdomains are extracted using a nested graph dissection algorithm of
ParMETIS or PT-SCOTCH, which requires the number of subdomains to be a power of two.
The default is the smaller of 64 and the largest power of two, which is less than or equal to
the total number of processors in pdslin comm.

• nproc dcomp (of type integer): specifies the number of processors used to extract the
interior subdomains. The default is set to be equal to the number of subdomains (i.e.,
num doms). A larger number may reduce the time required to extract the subdomains, but
may degrade the quality of the partition. This needs to be a power of two and greater than
or equal to num doms.

• drop tau0, drop tau1, drop tau2 (of type double): specify the dropping thresholds used

to compute the preconditioner (i.e., the thresholds for enforcing sparsity of G̃ℓ and W̃ℓ, T̃ℓ, and
S̃, respectively). The default values are 10−6, 0.0, and 10−5. Increasing the drop threshold
may reduce the time and memory required to compute the preconditioner, but it may increase
the number of iterations reqruied for solving the Schur complement system. When they are all
set to be zero, the direct solver (i.e., SuperLU DIST) is used to solve the Schur complement
system.

• equil dom (of type integer): specifies the equilbration and row permutation used on the
subdomains by SuperLU. If it is set to be zero, neither equilbration nor row permutation
is applied. If it is set to be a positive integer, then both equilbration and row permutation
are used. A negative integer specifies that only the equilbration is applied. See [9] for more
information on the equilbration. The default is −1 to apply just the equilbration.

• equl schur (of type integer): specifies the equilbration and row permutation used on the
approximate Schur complement. If it is set to be zero, then neither equilbration nor row
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permutation is applied. If it is negative, then only the equilbration is applied. If it is set to
be an integer value between 1 and 5, then it is used to call an external subroutine MC64 [10].
The default value is 5, which will compute a row permutation to move large elements to
diagonal and equilbration to scale the matrix so that the diagonals are all of modulus one,
and off diagonals have modulus less than or equal to one. See [17] for more information on
this parallel matrix preprocessing techniques.

• inner solver (of type t itsolver): specifies the iterative solver used to solve the Schur com-
plement system, and can be PDSLin GMRES, PDSLin FGMRES, PDSLin BICGSTAB, or
PDSLin TFQMR. The default is PDSLin GMRES. The description of the iterative methods
can be found, for example, in [15].

• inner max (of type integer): specifies the maximum total number of iterations for solving
the Schur complement system. The default is 1, 000.

• inner restart (of type integer): specifies the maximum number of GMRES or FGMRES
iterations before restart for solving the Schur complement system. The default is 100.

• inner tol (of type double): specifies the relative residual norms for stopping the iteration for
solving the Schur complement system. The default is 10−12.

• nproc schur (of type integer): specifies the number of processors used to compute the LU
factorization of S̃. The default is set to be half of the number of subdomains, but at least
one. It is dynamically adjusted so that each processor has at least 1, 000 rows of S̃.

• check input (of type integer): specifies if PDSLin checks for the validity of the input pa-
rameters when the subroutine pdslin solver is called. Invalid parameters are automatically
reset to their default values. It can be either PDSLin YES or PDSLin NO, and the default
is PDSLin YES. When pdslin solver is called to compute preconditioner or solution, only
the relevant parameters are checked. Specifically, the preconditioner cannot be changed by
changing a parameter to compute the preconditioners (e.g., num doms or drop tau0) when
calling pdslin solver to compute solution. See Section 8.2 for more details to recompute a
preconditioner.

• gather stat (of type integer): specifies if PDSLin gather performance statistics, and can be
either PDSLin YES or PDSLin NO. The default is PDSLin YES.

See the header file “pdslin solver.h” for the information on the remaining parameters.

7 Outputs

In this section, we describe the outputs from the pdslin solver subroutine. Specifically, in Sec-
tion 7.1, we explain how the computed solution vectors are distributed among the processors.
Then, in Section 7.2, we list the error codes that may be returned by pdslin solver. Finally, in
Section 7.3, we describe the data structure pdslin stat that stores the performance statistics of
PDSLin.

16



7.1 Solution vectors

The local solution vectors (i.e., the second argument in pdslin solver) is returned in the same
format as the local right-hand-side vectors (see Section 6.2). Specifically, each processor stores the
subset of the contiguous rows of the global solution vectors, where the index of the first row and
the number of rows in the local vectors are specified by the member variables frow and mloc of
PDSLinMatrix (see Section 6.1), respectively. The leading dimension of the local vectors can be
set by the member variable ldx of the data structure pdslin param (see Section 6.3), which must
be greater than mloc.

7.2 Error codes

An integer error code is returned in the fourth argument of pdslin solver subroutine. We list below
the possible error codes, and our suggestions on how to resolve the error by adjusting the input
parameters. See Section 6.3 for more details on the input parameters.

0 Success: PDSLin successfully completed the requested task.

-x Invalid parameters: The x-th parameter of pdslin param had an illegal value (see the header
file include/pdslin util.h for the mapping between x and the actual parameter). If you have
asked pdslin solver to check for invalid parameters, then the invalid parameter has been reset
to its default value, and pdslin solver has successfully completed the task.

1 Out of memory: The total memory requirement may be reduced by increasing the drop
tolerances or number of subdomains. Alternatively, you may be able to reduce the memory
required by each processor by increasing the total number of processors.

2 Failure to factorize subdomain: This is likely to be due to either out of memory or occurence
of a zero pivot. The memory requirement may be reduced by increasing the drop thresholds
or the number of subdomains, while the zero pivot may be avoided by using row permutation
on each subdomain. If the row permutation did not help, the global matrix may need to be
preprocessed before calling pdslin solver (e.g., to move large elements to diagonals).

3 Failure to factorize approximate Schur complement: Similar to the error code 2, the factor-
ization failed due to either out of memory or zero pivot. You may be able to reduce the
memory requirement by increasing the drop thresholds or the number of subdomains. The
zero pivot may be avoided by using row permutation on the approximate Schur complement,
but preprocessing may be needed on the global matrix.

4 Failure to converge: The iterations to solve the Schur complement system did not converge
within the specified maximum number of iterations. You may be able to avoid this by increas-
ing the maximum number of iterations or by decreasing the drop tolerances or the number of
subdomains. Alternatively, you can increase the relative residual norm used for the stopping
criteria.

5 Other failures. More detailed information on the error can be obtained by looking at the
member variable error of the data structure pdslin stat (see Section 7.3).
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In the current version of PDSLin, each processor may return a different error code. Furthermore, if
one processor fails, the rest of the processors may hung. To print out the error or warning messages,
set the verbose level of PDSLin to be PDSLin VERROR or PDSLin VWARN, respectively (see
Section 6.3).

7.3 Performance statisitics

The features described in this section are mainly for experts users who like to study the performance
of PDSLin in detail.

On return from the pdslin solver subroutine, some performance statistics are returned in the
fifth argument, which is of type pdslin stat:

typedef struct {

/* partition info */

int num_doms; /* number of subdomains */

int id; /* index of subdomain this processor is assigned */

int n1; /* total dimension of interior subdomains */

int n2; /* dimension of interface/separator */

int nnz_subdom; /* number of nonzeros in local interior subdomain */

int nnz_interf; /* number of nonzeros in local interface */

int nnz_seprat; /* number of nonzeros in local separators */

/* workspace info */

int nnz_w; /* number of nonzeros in intermediate local matrix W */

int nnz_g; /* number of nonzeros in intermediate local matrix G */

int nnz_s; /* number of nonzeros in local approximate schur complement */

/* preconditioner info */

int_t nnz_L, nnz_U; /* number of nonzeros in LU of "id"-th subdomain */

int_t nnz_PL, nnz_PU; /* number of nonzeros in LU of approximate Schur */

/* processor info */

int proc_id; /* processor id */

int *sepid; /* list of processor ids to compute preconditioner */

/* timing results in seconds */

double time_dd, /* time for matrix partitioning */

time_dst, /* time for matrix redistribution */

time_lu, /* time for subdomain factorization */

time_schur, /* time for approximate schur computation */

time_prep, /* time for preprocessing approximate schur */

time_prec, /* time for factorizing approximate schur */

time_fact, /* total time for preconditioner computation */

time_solve; /* total time for solution computation */

/* iteration results */
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int inner_itrs; /* total number of inner-iterations */

/* error code */

pdslin_error error; /* error code */

......

} pdslin_stat;

The last member variable error of pdslin stat contains detailed information of error generated
by the pdslin solver subroutine:

typedef struct {

int code; /* detailed error code */

int *info; /* pointer to error code (see Section 7.2) */

int error_print; /* specify to print out error location (PDSLin_YES/PDSLin_NO) */

int error_tau; /* specify to abort program with error (PDSLin_YES/PDSLin_NO) */

/* default values are PDSLin_NO */

} pdslin_error;

The detailed error codes are organized in a hierarchical fashion based on the location where the error
is generated. For instance, if the error is generated during the computation of the preconditioner
or solution, then the last digit of the error code is “1” or “2,” respectively. The error code is
further subdivided into several phases (e.g., Initialization, and Partitioning of the matrix for the
computation of the preconditioner) which is indicated by the second digit of the error code from
the last. Then, the third digit from the last indicates the subroutine, which generated the error,
and finally, the remaining numbers specify the type of the error. We list below the error codes:

1. Preconditioner computation xxx1
1.1. Initialization xx11

1.1.1. Top-level subroutine x111
- memory allocation error 1111
- invalid parameter error 2111

1.2 Partitioning of matrix xx21
1.2.1. Top-level subroutine x121

- memory allocation error 1121
1.3 Redistribution of matrix xx31

1.3.1. Top-level subroutine x131
- memory allocation error 1131

1.4. Subdomain factorization xx41
1.4.1. Top-level subroutine x141

- memory allocation error 1141
1.4.2. Preprocessing subroutine (e.g., MC64) x241

where “x” is replaced by the error code from the subroutine
1.4.3. Factorization subroutine (e.g., SuperLU DIST) x641

where “x” is replaced by the error code from the subroutine
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1.5. Approximate Schur computation xx51
1.5.1 Top-level subroutine x151

- memory allocation error 1151
1.5.2. Triangular solve subroutine (e.g.,SuperLU DIST) x651

where “x” is replaced by the error code from the subroutine
1.6. Preconditioner computation xx61

1.6.1. Top-level subroutine x161
- memory allocation error 1161

1.6.2. Preprocessing subroutine (e.g., MC64) x261
where “x” is replaced by the error code from the subroutine

1.6.3. Factorization subroutine (e.g., SuperLU DIST) x661
where “x” is replaced by the error code from the subroutine

2.0. Solution computation xxx2
2.1. Initialization xx12

2.1.1. Top-level subroutine x112
- memory allocation error 1112
- invalid parameter 2112

2.2. Forward-substitution xx22
2.2.1. Top-level subroutine x122

- memory allocation error 1122
2.2.2. Solver subroutine (e.g., SuperLU DIST) x622

2.3. Schur-complement solution xx32
2.3.1. Top-level subroutine x132

- memory allocation error 1132
2.3.2. Solver subroutine (e.g., SuperLU DIST/PETSc) x632

2.4. Backward-substitution xx42
2.4.1. Top-level subroutine x142

- memory allocation error 1142
2.4.2. Solver subroutine (e.g., SuperLU DIST) x642

8 Additional options

In this section, we describe some additional options of PDSLin, which may be useful in some cases.

8.1 Solving with multiple right-hand-side vectors

The structure pdslin param (see Section 6.3) has a member variable called “nrhs,” which stands for
the number of right-hand-side vectors, and specifies the number of columns in the right-hand-side
vectors. The default value of this variable is one. When this is set to be a value greater than one,
a single call to pdslin solver with PDSLin SOLVE computes the solution of a linear systems with
multiple right-hand-side vectors. In the current version (i.e., version 0.0), the direct solution of the
subdomain systems with multiple right-hand-side vectors is computed at the same time, while the
iterative solution of the Schur complement system is computed one vector at a time.

The member variable “ldb” and “ldx” of pdslin param specify the leading dimensions of the
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local right-hand-side and solution vectors, respectively. This variable is set to be the number of
rows in the local coefficient matrix by default (i.e., matrix.mloc), but can be any value greater than
or equal to matrix.mloc. The storage for the right-hand-side and solution vectors need to be large
enough to store nrhs×ldb elements, where the k-th vector is stored at ((k − 1)×ldb)-th through
((k − 1)×ldb+mloc−1)-th locations.

There are several advantages of computing the solution of the multiple right-hand-side vectors
at a time; 1) symbolic computation needs to be computed once, 2) fewer messages needs to be sent
to compute the solution, and 3) the data locality may be improved. These advantages may lead to
the reduction in the solution time.

8.2 Recomputing preconditioner for a different coefficient matrix

When the coefficient matrix of the linear system changes, the preconditioner to solve the Schur
complement system may need to be recomputed. In this case, the old preconditioner needs to be
first freed by calling pdslin solver with PDSLin CLEAN:

input.job = PDSLin_CLEAN;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

Then, a new preconditioner can be computed by setting the new coefficient matrix as described in
Section 4, and calling pdslin solver with PDSLin PRECO:

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

The first call to pdslin solver with PDSLin CLEAN frees all the memory allocated to compute
the old preconditioner, and the second call to pdslin solver with PDSLin PRECO recompute the
preconditioner for the new matrix.

Several optimizations can be applied, when the second matrix has the same sparsity pattern as
that of the first matrix. In order to take advantage of the same sparsity pattern, when calling the
pdslin solver to compute the preconditioner for the first matrix, the user needs to set the member
variable “save pattern” of pdslin param to be PDSLin YES:

/* compute preconditioner for the first matrix */

input.save_pattern = PDSLin_YES;

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

With this option, all the necessary information for the optimizations will be saved, e.g., the symbolic
computation, communication pattern, and the row pointer and column indexes of the local matrix
(i.e., matrix.lrowptr and matrix.lcolind do not have to be reset).

Then, when calling pdslin solver to compute the preconditioner for the second matrix, the user
needs to set the member variable “job” of pdslin param to be PDSLin NFACT:

/* free memory */

input.job = PDSLin_CLEAN;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

/* compute preconditioner for the second matrix */

input.job = PDSLin_NFACT;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );
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/* compute solution */

input.job = PDSLin_SOLVE;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

During the numerical computation of the preconditioner, all the redundant computation for the
same sparsity pattern (e.g., the communication setup and symbolic factorization) are skipped.

8.3 Using serial SuperLU to solve a subdomain system

Instead of using the parallel direct solver SuperLU DIST, the user can use a serial direct solver
SuperLU [4, 8] to solve the subdomain system. This restricts the user to use one processor per
subdomain. However, SuperLU version 4.0 or greater supports an incomplete LU factorization of
the subdomain, which may reduce the potential bottleneck of the direct solution of the subdomain
systems.

In order to link the serial SuperLU to PDSLin, the user must modify the make.inc file before
compiling the source code; specifically, -DWITH SLU needs to be included in the compiler flag and
the location of SuperLU on the target machine must be specified:

########################################################################

# C compiler flags

FLAGS = -fastsse -DWITH_PETSC -DWITH_SLU

########################################################################

# serial SuperLU for interior subdomain solves

I_SLU = -I$(TOP)/SuperLU_4.0/SRC

L_SLU = $(TOP)/SuperLU_4.0/lib/libsuperlu_4.0.a

Then, when calling pdslin solver to compute the preconditioner, the user needs to set the
member variable “dom solver” of pdslin param to be SLU, which is set to be SLU DIST by default:

/* compute preconditioner for the first matrix */

input.dom_solver = SLU;

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

Another member variable “tau sub” of pdslin param specifies the drop threshold to compute
the ILU factors of subdomains. The default value of the variable is zero, which indicates the LU
factorization subroutine of SuperLU is used to compute the preconditioner. When this variable is
set to be a positive value, it is used as the drop threshold, while a negative value indicates that the
default setup of the ILU subroutine is used. Hence, to use the default setup of the ILU subroutine,
pdslin solver needs to be called as follows:

/* compute preconditioner for the first matrix */

input.dom_solver = SLU;

input.tau_sub = -1.0;

input.job = PDSLin_PRECO;

dpdslin_solver( b_loc, x_loc, &matrix, &input, &stat, &info );

The details on the default setup of the ILU subroutine can be found in the SuperLU user guide [9].
When an ILU factorization of the subdomain is used, the inner-iteration of PDSLin solves an

approximate Schur complement system,
ŜŶ = Ẑ, (6)
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where

Ŝ = C −

k∑

ℓ=1

(FℓÛ
−1

ℓ
)(L̂−1

ℓ
Eℓ),

L̂ℓ and Ûℓ are the ILU factors of the ℓ-th subdomain Dℓ, and Ẑ = Z −

∑
k

ℓ=1
Fℓ(L̂ℓÛℓ)

−1Bℓ. Hence,
in order to obtain the solution to the global system, an outer-iteration is invoked. Since the
solution of (6) is computed using a Krylov subspace method with the stopping criteria specified
by the residual norm tolerance, the flexible version of GMRES (FGMRES) is used as the outer-
iteration [14].

There are several parameters to control the performance of FGMRES: The maximum number
and stopping criteria of the iterations are set by the member variables “outer max” and “outer tol”
of pdslin param, respectively, while the maximum number of iterations before the restart is set by
the member variable “inner restart.” The default values for outer max and outer tol are 100 and
10−12, respectively.2 Since the inner-iteration solves an approximate Schur complement system,
only a crude approximate solution is typically needed (e.g., the relative residual norm of 10−2).

In some cases, we have observed that the computational and memory requirements of PDSLin
can be reduced using the ILU factorization of the subdomains, but its effects depend on the prop-
erties of the linear system.

8.4 Assigning a different number of processors to each subdomain

When multiple processors are used to solve each subdomain system, we have the flexibility of
assigning different number of processors to each subdomain. An option available for the user is
to set the number of processors assigned to a subdomain to be proportional either to the size of
the subdomain or to the number of nonzeros in the subdomain. This can be done by setting the
member variable “pmap” of pdslin param to PDSLin PmapN or PDSLin PmapNNZ, respectively.
This may improve the load balance among the processors assigned to different subdomains, but
its effects depend on the structure of the coefficient matrix. The default is PDSLin NO, which
distributes the processors evenly among the subdomains.

8.5 Reducing memory requirement by taking advantage of symmetry

When the coefficient matrix A is symmetric, the computation of the preconditioner S̃ of (5) requires

only W̃ℓ, i.e., G̃ℓ = W̃ T

ℓ
. Hence, G̃ is not computed when the user sets the member variables

“mat type” and “mat pattern” of pdslin param to be SYMMETRIC (see Section 6.3). However,
there is an additional option to further reduce the memory required to compute the preconditioner.

With the default setup, both intermediate matrices W̃ℓ and G̃ℓ are stored by rows. This stor-
age scheme allows an efficient computation of T̃ℓ. Hence, even when G̃ℓ = W̃ T

ℓ
, both W̃ℓ and

W̃ T

ℓ
are stored by rows. This can be avoided by setting the member variable “column w” to be

PDSLin YES. However, the computation of T̃ℓ is typically slower using this option. Hence, this
option is recommended only when the computation of S̃ requires large memory.

2It is possible to solve the exact Schur complement system with the ILU preconditioner by setting the member

variable “exact schur” to be PDSLin YES. This requires the computation of both LU and ILU factorization of the

subdomains.
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